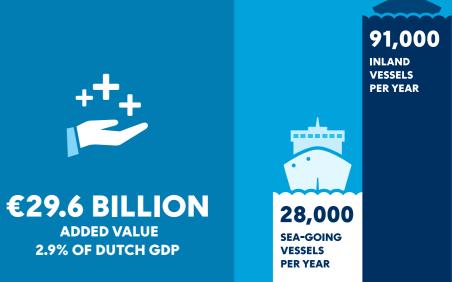
CONNECTING THE WORLD BUILDING TOMORROW'S SUSTAINABLE PORT

AMLAN BORA
11 NOVEMBER 2025



PORT OF ROTTERDAM

At a glance

LARGEST EUROPEAN PORT

CURRENT HYDROGEN PRODUCTION 0.5 MTON

13% OF TOTAL **EU ENERGY CONSUMPTION PASSES ROTTERDAM**

ca. 192,000 **DIRECT & INDIRECT JOBS**

PORT OF ROTTERDAM

What does the Port Authority do?

Promote partnerships between stakeholders, industry and others to forge a fair and balanced future.

Manage a secure, safe and efficient port

Plan, build and maintain sustainable infrastructure: waterways, pipelines, electricity grid, roads, rails

ENERGY TRANSITION BASED ON 4 PILLARS

PILLAR 1

EFFICIENCY AND INFRASTRUCTURE PILLAR 2

ANEW ENERGY SYSTEM PILLAR 3

ANEW FEEDSTOCK AND **FUEL SYSTEM**

PILLAR 4

SUSTAINABLE TRANSPORT

-55% CO₂ in 2030 (compared to 1990)

CO₂ Neutral in 2050

THROUGHPUT PER SCENARIO TOWARDS 2050 CONNECTED DEEP GREEN

In millions of tonnes

The Port of Rotterdam has developed four global scenarios, each resulting in a distinctive forecast of the throughput development towards 2050.

Key points throughput forecast

strength of NW Europe as industrial engine.

Current situation

Balanced portfolio with significant shares of containers and liquid bulk. Considerable share of dry bulk. Minimal throughput of renewable raw materials and renewable energy.

2000 2010

2020

2030

pace of energy transition.

2040

• Share of general cargo in throughput increases in all scenarios.

• Liquid bulk volume decreases in all scenarios; the extent to

• Dry bulk volume highly dependent on use of biomass and

• Growth in container volumes in all scenarios until 2035.

which is dependent on substitution to renewable flows and

2050

Fossil energy falls to zero in 2050; instead large amounts of renewable energy (e.g. H₂, NH₃). Strong increase in containers due to growing global trade.

WAKE-UP CALL

More biomass imports as feedstock for energy and chemicals. Late but rapid energy transition requires CO₂ storage. Increase in containers due to favourable economic climate.

REGIONAL WELL-BEING

Strong decline in crude oil, coal, iron ore due to contaction of energy-intensive industries. As a result, more general cargo volume due to imported semi-finished products.

PROTECTIVE MARKETS

Trade barriers lead to delayed substitution to renewable energy. Considerably less crude oil refining. Less general cargo due to reshoring and nearshoring.

Dry bulk

LEGEND

- Containers
- Liquid bulk (fossil)
- Breakbulk

290

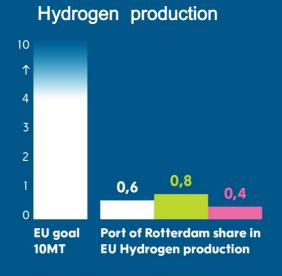


7.4 GW WINDFARMS NORTH SEA CONNECTED TO ROTTERDAMBY 2032

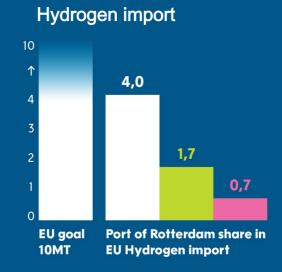
7.4 GW = 35% of all windpower projects in the Dutch part of the North Sea. These projects are to be realized by 2032.

Dutch ambition is to have 70 GW installed in 2050. Rotterdam aims to connect 25 GW = 35% to the port.

WINDFARM CONNECTIONS	CAPACITY	OPERATIONAL
Hollandse KustZuid	1.4 GW	2023
IJmuiden Ver Beta	2.0 GW	2029
IJmuiden Ver Gamma	2.0 GW	2031
Nederwiek II	2.0 GW	2032
Total	7.4 GW H ₂ production : 2-2,5GW	


ROTTERDAM: EUROPE'S HYDROGEN HUB

CO₂-reduction with renewable & low carbon hydrogen and its derivatives, with a large role for imports


Net zero Paris Climate Agreement 20 Mt H₂ import H₂ production H₂ equivalents Grey H₂ import ■ Grey H₂ production 15 10 2020 2030 2040 2050

European hydrogen goals for 2030

Rotterdam plays a huge role in fulfilling EU ambitions of 20Mton: our a im is to deliver 25%.

- REPowerEU ambitie: 0,6Mton
- Connected Deep Green: 0,8 Mton
- Protective markets: 0,4 Mton

- REPowerEU ambitie: 4Mton
- Connected Deep Green: 1,7 Mton
- Protective markets: 0,7 Mton

RULE OF THUMB

HIGH POTENTIAL IMPORT AREAS

Green hydrogen import is essential for Europe, as it uses more energy than it can produce.

COLOMBIA

CHILE

BRAZIL .

URUGUAY

ARGENTINA

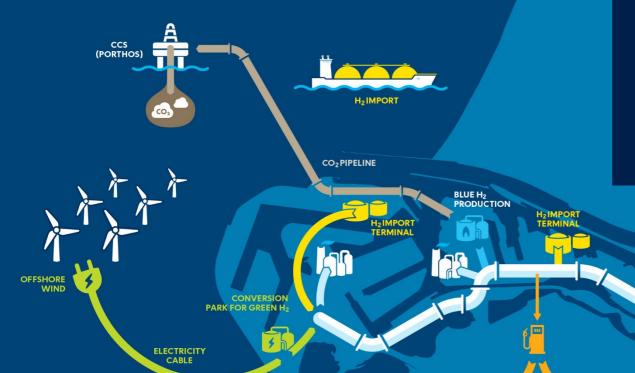
NAMIBIA

SOUTH AFRICA

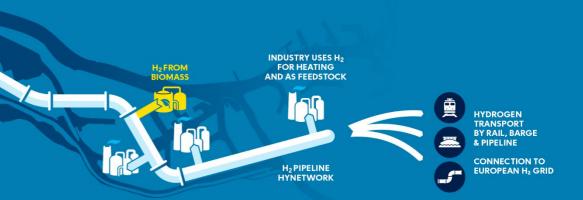
Progress and planning

- Expected import Hydrogen and its derivates in Rotterdam: 0.7-1.7 Mton in 2030, 18 Mton in 2050.
- Huge potential for production in many areas worldwide.

AUSTRALIA


- Imports Rotterdam are expected to start around 2025.
- 14 terminals have announced plans for import facilities.
- Rotterdam is preparing itself for Ammonia, methanol, Liquid H₂, SAF and LOHC.
- Not in the last place, India is a front running country.

Hydrogen export location


Direct involvement Port of Rotterdam

ROTTERDAM'S HYDROGEN **ECOSYSTEM IS BEING BUILT RIGHT NOW**

We are making this happen

- Offshore wind farms connected to Rotterdam: 7.4 GW in 2030.
- Production of green hydrogen (first 200 MW electrolyser under construction): 2-2.5 GW in 2030.
- Construction of open access Hydrogen pipeline across the port has started, connecting production, imports & use (part of an international hydrogen network; Delta Rhine Corridor).
- CCS to decarbonize grey hydrogen production .
- CCS to decarbonize refinery gasses
- However, massive import of hydrogen and its deriviates: 90% will be imported in 2050, only 10% produced locally.

HYDROGEN PROJECTS

GREEN H PRODUCTION STARTS AT DEDICATED SITES FOR ELECTROLYSIS

PROJECT (COMPANY)	CAPACITY	PLANNED FIE	OPERATIONAL
Conversion park 1			
Holland Hydrogen I (Shell)	200MW	✓ 2022	2026
ELYgator (Air Liquide)	200MW	1 2025	2027
HyCC Project (HyCC)	250MW	2027	2030
Fourth plot	200MW		
Conversion park 2			
Zeevonk (CIP/Vattenfall)	~1000MW	2029	2032
MaasH2 (RWE)	~250MW	2027	2030
Brownfield			
Eneco Electrolyser (Eneco)	800MW	2028	2030
H2Maasvlakte (Uniper)	500MW	2028	2030

HYDROGEN IMPORT ARRIVAL LOCATIONS ROTTERDAM

14 hydrogen existing and announced terminals

PLANNED FID	OPERATIONAL
Operational	2026
2025	2028
2026	2029
2026	2029
2027	>2030
2028	>2030
Operational	\checkmark
2027	2030
t.b.d.	2029
t.b.d.	2029
t.b.d.	>2030
	Operational

NEW BUILT AND EXISTING PIPELINE CONNECTIONS

PROJECT (COMPANY)	CAPACITY	PLAN	NED FID	OPERATIONAL
Open access				
Hydrogen network Rotterdam	1,200 ktpa	✓	2022	2026
Delta Rhine Corridor*	2,000 ktpa		2026	2032
Hydrogen network Netherlands	2,000 ktpa		n/a	2033
Private (in Rotterdam)				
Air Liquide	confidential		n/a	✓
Air Products	confidential		n/a	✓

WELL CONNECTED TO H₂ DEMAND CENTERSIN NORTHWEST EUROPE

Offtakers in this region

Airports

(Bio) Refineries

>20

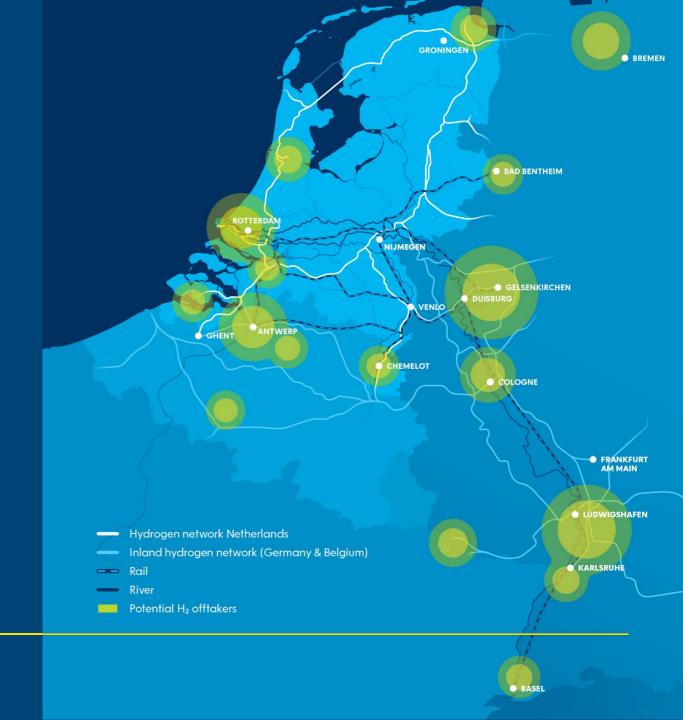
Steel plants

>6

Chemical Parks

>25

Power Plants


>80

Bunkering

>28,000 vessels

INLAND DISTRIBUTION

Hydrogen carrier are already distributed inland via barge and rail

91,000 VESSELS PER YEAR

1,000-5,000 SHIP CAPACITY

Multiple OPERATORS

PRODUCT	# VESSELS	CAPACITY (TONNES)	OPERATIONAL
Ammonia ¹	10	1,000-2,000	✓
Methanol	20	1,000-2,500	✓
LOHC	n/ a	3,000	✓
LH ₂ (isota iners)			✓
CH ₂ (containers)			<u> </u>



PROJECTED PORT READINESS FOR SHIPO-SHIP BUNKERING

Port Readiness Level (PRL) for marine fuel

4	PRL 1	Fuel relevance assessed
Research	PRL 2	Interest of port stakeholders determined
Re	PRL 3	Sufficient information gathered
tu:	PRL 4	Policy for bunkering specific fuel decided, roadmap developed
Development	PRL 5	Framework for bunkering and associated activities of a specific fuel designed
PRL 6		Framework for bunkering specific fuel demonstrated in a protected environment
nent	PRL 7	Bunkering of specific fuel established on a project base in an operating environment
Deployment	PRL 8	System for bunkering of specific fuel complete and qualified
De	PRL 9	Bunkering of specific fuel integrated in regular port operations

Building site Conversion park

Porthos & Hynetwork

Shell Holland Hydrogen 1

Offshore wind landfall



HYDROGEN CONVERSION PARK 2

Zeevonk 1GW electrolyser

PLANNING

2025

Import

First green ammonia imports.

Import

Expansion existing ammonia terminal operational.

Use

First H₂ fueling station for trucks in the Port operational.

Pilot a mmonia ship 2 ship operation. 2026

Production

First 200 MW elektrolyzer operational (Shell Holland Hydrogen I).

Infrastructure

'Hydrogen network' pipeline in the port operational.

Use

First green hydrogen replaces grey in refineries

Use

CCS in fra structure operational (Porthos), grey hydrogen turns blue.

First 'Condor' hydrogen powered inland barges operational.

2028

Production

Conversion Park I elektrolyzer expansions $\sim 400 MW$.

Import

2nd import terminal for ammonia operational, first ammonia cracker operational.

2030

Production

2,5 GW elektrolysers operational $(\sim 0.3 \text{ Mton H}_2)$.

Import

0.7-1.7 Mton H₂ imports.

Road transport

1,000 H2 powered trucks.

Import

LOHC imports industrial scale.

2032

Production

First blue hydrogen plant operational using Refinery Fuel Gases.

Import

First LH₂ terminal operational.

Infrastructure

'Delta Rhine Corridor' pipelines to Chemelot, North Rhine-Westfalia operational (P90)

Infrastructure

National Hydrogen pipeline network' operational.

2035

Production

3,5 GW elektrolysers operational $(\sim 0.4 \text{ Mton H}_2).$

Import

4.0 Mton H₂ imports.

APPENDIX

THE PORT OF ROTTERDAM IS READY TO RECEIVE **ALL TYPES OF CARRIERS**

Clean ammonia

One existing terminal. 5 new terminals announced.

Ammonia bunker pilot successfully completed.

Clean methanol

Multiple existing terminals. Already a European methanol hub.

Commercial bunkering of methanol already available in the port.

Liquid hydrogen

2 Feasibility studies for new terminal completed.

LH₂ bunkering is currently being studied for several clients in the port.

Liquid organic hydrogen carrier

Conversion of 2 existing terminals.

Other

Other technologies are also being explored (e.g. NaBH2).

Sustainable Aviation Fuel (SAF) is also handled at Port of Rotterdam, it is considered a hydrogen based fuel and not per se a carrier

WHY HYDROGEN?

From the perspective of:

Production & storage

Transitioning from fossil energy sources to variable renewables like wind & solar, and decarbonizing fossil energy flows before use.

Electricity is costly and difficult to store in large quantities, and direct use of fossil energy emits CO₂.

Hydrogen, easier to store and potentially in derivatives like methanol, syn-NG, and ammonia, is the next best option from an energy quality perspective.

Demand

Electrification not a lwa ys possible, a va ila ble, relia ble or still in low level of development.

Hydrogen and/or hydrogen carriers is the best option for:

- Aviation and shipping, heavy trucks.
- (High) temperature heating.
- Feedstock for (bio)fuel & chemicals, steel.

Infrastructure

Spatial use of and costs of electric infrastructure versus hydrogen infrastructure.

Combination of multiple carriers offers optionality and flexibility and serves multiple markets.

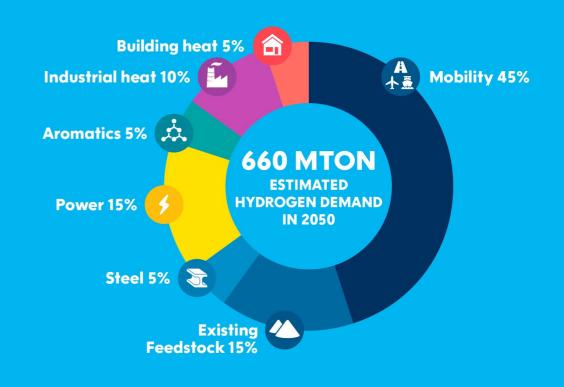
Security of supply

Diversification of countries (Expansion).

Diversification of sources: low-carbon (fossil + CCS and renewable).

Potential of local production (independent).

Reducing the CO₂ footprint and production of low-carbon products.


NET ZERO SCENARIO HYDROGEN WORLDWIDE

The global hydrogen market in 2050

To meet net-zero targets, long-term hydrogen demand should reach 660 MT in 2050, making up 22% of the final energy demand globally.

Source: Hydrogen Council, McKinsey & Company, Hydrogen for Net-Zero (2021)

FUTURE SCENARIOS TOWARDS 2050

Port of Rotterdam has developed possible global scenarios to explore ways forward and prepare for uncertainties ahead in a rapidly changing world.

ENVIRONMENT & SOCIETY

TECHNOLOGY & SUPPLY CHAINS

EXTERNAL DRIVERS (VARIABLE)

Geopolitical stability

Government policy

Consumer behaviour

Global climate change measures

Circular economy

Corporate Social Responsibility

True cost of production

True cost of transport

GLOBAL SCENARIOS 2050

INCREASING THE CAPACITY OF THE ELECTRICITY GRID

Large renewable H 2 production close to wind energy landfall

